抽签时先抽和后抽中间的几率是怎么样的,抽签时先抽和后抽抽中的几率
抽签时先抽和后抽中签的几率是
相等。均等,不管谁先抽都是公平的。索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。 拓展资料:抽签的先后顺序与结果无关。使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。 基本规则1、各地方民间抽签的签诗大部分都是28个签组成的(实际是27个签加上1个站签),而庵、堂、寺、观、多以60签或100签为主进行占卜的,因为民间签的数字是以28星宿象来代表的。60签的数字是以60甲子来表示的,100签的数字是应用八卦中的64卦和6爻的总数演变而来的如8×8 +6×6 =100。有的人认为100签的数字是根据12月份,150%节气和72候的总和而成的。2、按惯例抽签者烧完香后,在神像面前聚精会神地在心里默念出自已所祈求的目的和内容,然后从签筒中任意抽一根签出来(有的地方抽签是用摇签的方式)后,再把桌面上的“圣杯”(有的地方称为茭)扔到地上,有一正面一反面的才算是这一签,否则就得重新再抽。
抽签先抽和后抽概率一样么?为什么
抽签先抽和后抽概率是一样的. 因为每一只签被抽到的可能性没有变化,与先抽和后抽的顺序无关,所以抽签先抽和后抽概率是一样的.
抽签时先抽和后抽概率一样吗
抽签时先抽和后抽概率一样。假设参与抽签的四个人为ABCD,字母的顺序对应着他们抽签的顺序。A是第一个抽签的,他的中奖概率为1/4。B是第二个抽签的人,所以奖品有可能已经被A抽走了,而A中奖的概率为1/4,也就是说A没有将奖品抽走的概率为3/4。而如果A没有将奖品抽走,那么B中奖的概率就提高到了1/3,所以B的总体中奖概率就是3/4乘以1/3,等于1/4,显然,B和A一样,中奖概率都是1/4。接下来是C,计算方法和B一样,A和B已经抽了两次,所以奖品仍然没有被抽走的概率为2/4,而如果奖品没有被抽走,C的中奖率为1/2,2/4乘以1/2就等于1/4,C的中奖概率也是1/4。最后是D,按照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/4。抽签优缺点抽签法又称“抓阄法”,它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便。如果标号的签搅拌得不均匀,会导致抽样不公平。抽签时先抽和后抽中签的几率是
相等。均等,不管谁先抽都是公平的。索性用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。 拓展资料:抽签的先后顺序与结果无关。使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。 基本规则1、各地方民间抽签的签诗大部分都是28个签组成的(实际是27个签加上1个站签),而庵、堂、寺、观、多以60签或100签为主进行占卜的,因为民间签的数字是以28星宿象来代表的。60签的数字是以60甲子来表示的,100签的数字是应用八卦中的64卦和6爻的总数演变而来的如8×8 +6×6 =100。有的人认为100签的数字是根据12月份,150%节气和72候的总和而成的。2、按惯例抽签者烧完香后,在神像面前聚精会神地在心里默念出自已所祈求的目的和内容,然后从签筒中任意抽一根签出来(有的地方抽签是用摇签的方式)后,再把桌面上的“圣杯”(有的地方称为茭)扔到地上,有一正面一反面的才算是这一签,否则就得重新再抽。抽签时先抽和后抽中签的几率是
抽签时先抽和后抽中签的几率是均等的。不管怎么抽签,最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,所以中签的可能性必然是相等的。
抽签时中签的几率相同吗抽签时中签的几率均等,不管谁先抽都是公平的。我们索性用一个一般情况来证明,假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关,不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
抽签时先抽和后抽中奖的几率是
抽签时先抽和后抽中奖的几率是一样的。抽签时无论谁抽到签都不打开,先抽和后抽的中奖概率是一样的;如果第一个人抽签后打开结果,则后面的人抽签中奖的概率与本题中的中奖概率是不同的问题。