十个人抽签先后概率一样吗,10个人抽10支签其中有两只好签
2025-04-03
内容提要:
有十张将票,其中只有一张是中将, 现有十个人去抽, 并抽了将票不放回... 怎样用概率分析抽签的公平合理性? 抽签时先抽和后抽中签的几率是 抽签时先抽和后抽中签的几率是相等的还是不等的? 按顺序进行抽奖,先抽和后抽的中奖概率一样吗? 抽签先抽和后抽概率一样么?为什么
有十张将票,其中只有一张是中将, 现有十个人去抽, 并抽了将票不放回...
是啊~~~相等的概率
怎样用概率分析抽签的公平合理性?
假设只有一个人中奖,因为第二个中奖了是在第一个人没中奖的基础上的,所以第一步得先算上第一个人没中奖的概率 ,根据乘法原理,再乘以第二个人中奖的概率.所以你看共是5个签,有一个签是奖,其余4个签没奖,第一个人在没中奖的选了一张所以是A41 第二个人中奖了说明是A11 基本事件是从5个里面先后抽走2张A52所以是 A41A11/A52即A41/A52 你可以阅读一下高二数学教材里的一篇阅读材料,"抽签有先有后,对个人公平吗?"其实还可以这样理解:第一个人没中奖的概率是4/5 第二个人中奖的概率是1/4 那么是4/5*1/4求采纳
抽签时先抽和后抽中签的几率是
抽签时先抽和后抽中签的几率是均等的。不管怎么抽签,最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,所以中签的可能性必然是相等的。 抽签时中签的几率相同吗 抽签时中签的几率均等,不管谁先抽都是公平的。我们索性用一个一般情况来证明,假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。 我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。 抽签的先后顺序与结果无关,不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。抽签时先抽和后抽中签的几率是相等的还是不等的?
相等。抽签不管谁先抽都是相等公平的。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。比如在公司开会或者团建的时候,领导经常会出其不意提出一些烧脑的问题,而面对这些问题,我们首先应该弄清的是先回答还是后回答。计算验证:从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。按顺序进行抽奖,先抽和后抽的中奖概率一样吗?
均等,不管谁先抽都是公平的。
用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。
而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。抽签选择是一种较公平的选择方法,在不公布结果的情况下,抽签先后顺序是不会影响中奖概率的。
抽签先抽和后抽概率一样么?为什么
抽签先抽和后抽概率是一样的. 因为每一只签被抽到的可能性没有变化,与先抽和后抽的顺序无关,所以抽签先抽和后抽概率是一样的.