抽签的顺序哪个最好,上上签大吉签排序
演讲比赛抽签,前面好还是后面
中间偏前面一点好,太前面打分保守,太后面评委都累了
先抽签还是先排序?
均等,不管谁先抽都是公平的。
用一个一般情况来证明。假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。
而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,此后每一个人中签的机会都是m/n。其实这个问题还有更简单的想法。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。抽签选择是一种较公平的选择方法,在不公布结果的情况下,抽签先后顺序是不会影响中奖概率的。
抽签第一次与第二次不一样,哪次为准?
既然相信抽签就要一次定准不准无论是好还是坏,你既然抽两次那么第一次的肯定不满意, 可是第二次的有你想要的答案但是里面的一些附带条件又不是你满意的,所以最终这个答案还是要你自己权衡。抽签是中国的民间习俗,是占卜的其中一种形式。现今的道观、寺庙和民间的庙宇,大多摆上签筒供人抽取签条问卜。抽签同八卦一样,是我国古代民间为了判断问事项吉凶、祸福的一种通俗预测方式。而判断吉凶的依据是所得到其中第几签的签诗和其签诗的典故内容。抽签基本原则1、各地方民间抽签的签诗大部分都是28个签组成的(实际是27个签加上1个站签),而庵、堂、寺、观、多以60签或100签为主进行占卜的,因为民间签的数字是以28星宿象来代表的。60签的数字是以60甲子来表示的,100签的数字是应用八卦中的64卦和6爻的总数演变而来的如8×8 +6×6 =100。2、按惯例抽签者烧完香后,在神像面前聚精会神地在心里默念出自已所祈求的目的和内容,然后从签筒中任意抽一根签出来(有的地方抽签是用摇签的方式)后,再把桌面上的“圣杯”(有的地方称为茭)扔到地上,有一正面一反面的才算是这一签,否则就得重新再抽。以上内容参考:百度百科-抽签抽签后抽好还是先抽好?其中的概率问题是怎样的?
抽签是我们在工作和生活中经常会遇到的一个问题,比如买房子要抽签、公司年会要抽奖、街头促销要抽签、就连家务劳动洗完拖地,有的时候也要抽签,而只要抽签就涉及到了一个问题,那就是先抽还是后抽。有人说先抽具有优势,因为先抽的人可以保证奖品不被别人抽走,而有的人则认为后抽有优势,因为只要前面的人没有抽中,那么后面的人抽中奖品的概率就会逐渐提高。到底谁说得对呢?抽签是应该先抽还是后抽呢?这其实是一个概率问题,要说明这个概率问题,我们需要一个实际的例子。我们可以假设现在有四个人要参与抽签,签筒中一共有四个签,其中3个都是白纸一张,而只有一张可以中奖,奖品为海景房一套。我们假设参与抽签的四个人为ABCD,字母的顺序对应着他们抽签的顺序。A是第一个抽签的,他的中奖概率一目了然,为1/4。我们主要从B说起,B是第二个抽签的人,所以奖品有可能已经被A抽走了,而A中奖的概率为1/4,也就是说A没有将奖品抽走的概率为3/4。而如果A没有将奖品抽走,那么B中奖的概率就提高到了1/3,所以B的总体中奖概率就是3/4乘以1/3,等于1/4,显然,B和A一样,中奖概率都是1/4。接下来是C,计算方法和B一样,A和B已经抽了两次,所以奖品仍然没有被抽走的概率为2/4,而如果奖品没有被抽走,C的中奖率为1/2,2/4乘以1/2就等于1/4,C的中奖概率也是1/4。最后是D,按照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/4。通过上面的计算可知,抽签的顺序与中奖概率之间并没有关系,不管先抽还是后抽,总体中奖概率都是相等的,可见抽签十分公平。在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。比如在公司开会或者团建的时候,领导经常会出其不意提出一些烧脑的问题,而面对这些问题,我们首先应该弄清的是先回答还是后回答。先回答可能会赢得表现的机会,但万一答错很可能会成为一个反面的典型,甚至给领导留下不好的印象。而后回答,虽然有可能丧失表现的机会,可如果前面的人都答错了,自己可能会幸免于难,因为领导通常不会有耐心听完所有人的答案。那么先答还是后答呢?这是一个不同于抽签的概率问题。为了让问题便于说明,我们只举一个两个人的例子来进行说明。我们将回答问题的两个人命名为A和B,字母的顺序对应着他们回答问题的顺序。就让是要回答问题,那么问题的难易程度就是一个关键数据,我们假设所面临的问题难度适中,答对的概率为50%。A如果想要胜出,那么首先自己要答对问题,而同时又要保证B没有答对,所以他胜出的概率就是50%乘以B胜出的概率。再来看B,在A没有答对问题的情况下,B后答,答对了问题就获得了胜利,所以B胜出的概率就是1减去A胜出的概率,这就形成了一个方程组,求解得出A获胜的概率是33.3%,而B获胜的概率为66.6%,显然后答更具有优势。当然,这与问题的难易程度是有关系的。通过上面的方程组可知,问题越难,B胜出的概率就越高,而问题越简单,A胜出的概率就越高,但是,不管问题变得多么简单,B胜出的概率永远都不会低于50%,而A获胜的概率永远都不会高于50%,所以不论怎样,后回答永远都是具有优势的。两个人是如此,3个人、4个人、或者是100个人,结论都是没有变化的,比如我们将回答问题的人数提高到3个,同样,问题越是困难,最后回答的人的胜率就越高,而问题越是简单,先回答的人的胜率就越高,但无论问题变得多么的简单,最后一个人的胜率也不会低于33.3%,而前面的两个人的胜率也永远不可能高于33.3%,所以不论回答问题的人有几个,也不论问题的难易程度如何,最后回答的人胜率永远不会低于前面的回答者。是上上签好还是下下签好?
上上签更好。签的区别:1、上上签:大吉大利,百事顺遂,大概是指不仅走路拾金,天下还可掉陷饼之类的好事多多。2、上签:如果不是那么贪心的话,这已是很好了!上上签只有很少的机率!运气很好。3、上平签:如美玉之瑕,无防大雅。大多寓意苦尽甘来,风雨之后见彩虹。抽签是中国的民间习俗,是占卜的其中一种形式。现今的道观、寺庙和民间的庙宇,大多摆上签筒供人抽取签条问卜。抽签同八卦一样,是我国古代民间为了判断问事项吉凶、祸福的一种通俗预测方式。而判断吉凶的依据是所得到其中第几签的签诗和其签诗的典故内容。
抽签后抽好还是先抽好?其中的概率问题是怎样的?
抽签是我们在工作和生活中经常会遇到的一个问题,比如买房子要抽签、公司年会要抽奖、街头促销要抽签、就连家务劳动洗完拖地,有的时候也要抽签,而只要抽签就涉及到了一个问题,那就是先抽还是后抽。
有人说先抽具有优势,因为先抽的人可以保证奖品不被别人抽走,而有的人则认为后抽有优势,因为只要前面的人没有抽中,那么后面的人抽中奖品的概率就会逐渐提高。到底谁说得对呢?抽签是应该先抽还是后抽呢?这其实是一个概率问题,要说明这个概率问题,我们需要一个实际的例子。我们可以假设现在有四个人要参与抽签,签筒中一共有四个签,其中3个都是白纸一张,而只有一张可以中奖,奖品为海景房一套。
我们假设参与抽签的四个人为ABCD,字母的顺序对应着他们抽签的顺序。
A是第一个抽签的,他的中奖概率一目了然,为1/4。我们主要从B说起,B是第二个抽签的人,所以奖品有可能已经被A抽走了,而A中奖的概率为1/4,也就是说A没有将奖品抽走的概率为3/4。而如果A没有将奖品抽走,那么B中奖的概率就提高到了1/3,所以B的总体中奖概率就是3/4乘以1/3,等于1/4,显然,B和A一样,中奖概率都是1/4。
接下来是C,计算方法和B一样,A和B已经抽了两次,所以奖品仍然没有被抽走的概率为2/4,而如果奖品没有被抽走,C的中奖率为1/2,2/4乘以1/2就等于1/4,C的中奖概率也是1/4。最后是D,按照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/4。
通过上面的计算可知,抽签的顺序与中奖概率之间并没有关系,不管先抽还是后抽,总体中奖概率都是相等的,可见抽签十分公平。
在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。比如在公司开会或者团建的时候,领导经常会出其不意提出一些烧脑的问题,而面对这些问题,我们首先应该弄清的是先回答还是后回答。
先回答可能会赢得表现的机会,但万一答错很可能会成为一个反面的典型,甚至给领导留下不好的印象。而后回答,虽然有可能丧失表现的机会,可如果前面的人都答错了,自己可能会幸免于难,因为领导通常不会有耐心听完所有人的答案。那么先答还是后答呢?这是一个不同于抽签的概率问题。
为了让问题便于说明,我们只举一个两个人的例子来进行说明。
我们将回答问题的两个人命名为A和B,字母的顺序对应着他们回答问题的顺序。就让是要回答问题,那么问题的难易程度就是一个关键数据,我们假设所面临的问题难度适中,答对的概率为50%。A如果想要胜出,那么首先自己要答对问题,而同时又要保证B没有答对,所以他胜出的概率就是50%乘以B胜出的概率。
再来看B,在A没有答对问题的情况下,B后答,答对了问题就获得了胜利,所以B胜出的概率就是1减去A胜出的概率,这就形成了一个方程组,求解得出A获胜的概率是33.3%,而B获胜的概率为66.6%,显然后答更具有优势。当然,这与问题的难易程度是有关系的。
通过上面的方程组可知,问题越难,B胜出的概率就越高,而问题越简单,A胜出的概率就越高,但是,不管问题变得多么简单,B胜出的概率永远都不会低于50%,而A获胜的概率永远都不会高于50%,所以不论怎样,后回答永远都是具有优势的。
两个人是如此,3个人、4个人、或者是100个人,结论都是没有变化的,比如我们将回答问题的人数提高到3个,同样,问题越是困难,最后回答的人的胜率就越高,而问题越是简单,先回答的人的胜率就越高,但无论问题变得多么的简单,最后一个人的胜率也不会低于33.3%,而前面的两个人的胜率也永远不可能高于33.3%,所以不论回答问题的人有几个,也不论问题的难易程度如何,最后回答的人胜率永远不会低于前面的回答者。