文本情感分析基本思路,文本情感分析流程图

人工智能技术应用:情感分析概述

与其他的人工智能技术相比,情感分析(Sentiment Analysis)显得有些特殊,因为其他的领域都是根据客观的数据来进行分析和预测,但情感分析则带有强烈的个人主观因素。情感分析的目标是从文本中分析出人们对于实体及其属性所表达的情感倾向以及观点,这项技术最早的研究始于2003年Nasukawa和Yi两位学者的关于商品评论的论文。 随着推特等社交媒体以及电商平台的发展而产生大量带有观点的内容,给情感分析提供了所需的数据基础。时至今日,情感识别已经在多个领域被广泛的应用。例如在商品零售领域,用户的评价对于零售商和生产商都是非常重要的反馈信息,通过对海量用户的评价进行情感分析,可以量化用户对产品及其竞品的褒贬程度,从而了解用户对于产品的诉求以及自己产品与竞品的对比优劣。在社会舆情领域,通过分析大众对于社会热点事件的点评可以有效的掌握舆论的走向。在企业舆情方面,利用情感分析可以快速了解社会对企业的评价,为企业的战略规划提供决策依据,提升企业在市场中的竞争力。在金融交易领域,分析交易者对于股票及其他金融衍生品的态度,为行情交易提供辅助依据。 目前,绝大多数的人工智能开放平台都具备情感分析的能力,如图所示是玻森中文语义开放平台的情感分析功能演示,可以看出除了通用领域的情感分析外,还有汽车、厨具、餐饮、新闻和微博几个特定领域的分析。

那么到底什么是情感分析呢?从自然语言处理技术的角度来看,情感分析的任务是从评论的文本中提取出评论的实体,以及评论者对该实体所表达的情感倾向,自然语言所有的核心技术问题,例如:词汇语义,指代消解,此役小气,信息抽取,语义分析等都会在情感分析中用到。因此,情感分析被认为是一个自然语言处理的子任务,我们可以将人们对于某个实体目标的情感统一用一个五元组的格式来表示:(e,a,s,h,t)

以图为例,e是指某餐厅,a为该餐厅的性价比属性,s是对该餐厅的性价比表示了褒义的评价,h为发表评论者本人,t是19年7月27日。所以这条评论的情感分析可以表示为五元组(某餐厅,性价比,正向褒义,评论者,19年7月27日)。

情感分析根据处理文本颗粒度的不同,大致可以分为三个级别的任务,分别是篇章级、句子级和属性级。我们分别来看一下。

1. 篇章级情感分析

篇章级情感分析的目标是判断整篇文档表达的是褒义还是贬义的情感,例如一篇书评,或者对某一个热点时事新闻发表的评论,只要待分析的文本超过了一句话的范畴,即可视为是篇章级的情感分析。 对于篇章级的情感分析而言有一个前提假设,那就是全篇章所表达的观点仅针对一个单独的实体e,且只包含一个观点持有者h的观点。这种做法将整个文档视为一个整体,不对篇章中包含的具体实体和实体属性进行研究,使得篇章级的情感分析在实际应用中比较局限,无法对一段文本中的多个实体进行单独分析,对于文本中多个观点持有者的观点也无法辨别。 例如评价的文本是:“我觉得这款手机很棒。”评价者表达的是对手机整体的褒义评价,但如果是:“我觉得这款手机拍照功能很不错,但信号不是很好”这样的句子,在同一个评论中出现了褒义词又出现了贬义词,篇章级的分析是无法分辨出来的,只能将其作为一个整体进行分析。 不过好在有很多的场景是不需要区分观点评价的实体和观点持有者,例如在商品评论的情感分析中,可以默认评论的对象是被评论的商品,评论的观点持有者也是评论者本人。当然,这个也需要看被评论的商品具体是什么东西,如果是亲子旅游这样的旅游服务,那么评论中就很有可能包含一个以上的观点持有者。 在实际工作中,篇章级的情感分析无法满足我们对于评价更细致,如果需要对评论进行更精确,更细致的分析,我们需要拆分篇章中的每一句话,这就是句子级的情感分析研究的问题。

2. 句子级情感分析

与篇章级的情感分析类似,句子级的情感分析任务是判断一个句子表达的是褒义还是贬义的情感,虽然颗粒度到了句子层级,但是句子级分析与篇章级存在同样的前提假设是,那就是一个句子只表达了一个观点和一种情感,并且只有一个观点持有人。如果一个句子中包含了两种以上的评价或多个观点持有人的观点,句子级的分析是无法分辨的。好在现实生活中,绝大多数的句子都只表达了一种情感。 既然句子级的情感分析在局限性上与篇章级是一样的,那么进行句子级的情感分析意义何在呢?关于这个问题,需要先解释一下语言学上主观句与客观句的分别。在我们日常用语当中,根据语句中是否带有说话人的主观情感可以将句子分为主观句和客观句,例如:“我喜欢这款新手机。”就是一个主观句,表达了说话人内心的情感或观点,而:“这个APP昨天更新了新功能。”则是一个客观句,陈述的是一个客观事实性信息,并不包含说话人内心的主观情感。通过分辨一个句子是否是主观句,可以帮助我们过滤掉一部分不含情感的句子,让数据处理更有效率。 但是在实操过程中,我们会发现这样的分类方法似乎并不是特别准确,因为一个主观句也可能没有表达任何的情感信息,知识表达了期望或者猜测,例如:“我觉得他现在已经在回家的路上了。”这句话是一个主观句,表达了说话人的猜测,但是并没有表达出任何的情感。而客观句也有可能包含情感信息,表明说话者并不希望这个事实发生,例如:“昨天刚买的新车就被人刮花了。”这句话是一个客观句,但结合常识我们会发现,这句话中其实是包含了说话人的负面情感。 所以,仅仅对句子进行主客观的分类还不足以达到对数据进行过滤的要求,我们需要的是对句子是否含有情感信息进行分类,如果一个句子直接表达或隐含了情感信息,则认为这个句子是含有情感观点的,对于不含情感观点的句子则可以进行过滤。目前对于句子是否含有情感信息的分类技术大多都是采用有监督的学习算法,这种方法需要大量的人工标注数据,基于句子特征来对句子进行分类。 总之,我们可以将句子级的情感分析分成两步,第一步是判断待分析的句子是否含有观点信息,第二步则是针对这些含有观点信息的句子进行情感分析,发现其中情感的倾向性,判断是褒义还是贬义。关于分析情感倾向性的方法与篇章级类似,依然是可以采用监督学习或根据情感词词典的方法来处理,我们会在后续的小节详细讲解。 句子级的情感分析相较于篇章级而言,颗粒度更加细分,但同样只能判断整体的情感,忽略了对于被评价实体的属性。同时它也无法判断比较型的情感观点,例如:“A产品的用户体验比B产品好多了。”对于这样一句话中表达了多个情感的句子,我们不能将其简单的归类为褒义或贬义的情感,而是需要更进一步的细化颗粒度,对评价实体的属性进行抽取,并将属性与相关实体之间进行关联,这就是属性级情感分析。

3. 属性级情感分析

上文介绍的篇章级和句子级的情感分析,都无法确切的知道评价者喜欢和不喜欢的具体是什么东西,同时也无法区分对某一个被评价实体的A属性持褒义倾向,对B属性却持贬义倾向的情况。但在实际的语言表达中,一个句子中可能包含了多个不同情感倾向的观点,例如:“我喜欢这家餐厅的装修风格,但菜的味道却很一般。”类似于这样的句子,很难通过篇章级和句子级的情感分析了解到对象的属性层面。 为了在句子级分析的基础上更加细化,我们需要从文本中发现或抽取评价的对象主体信息,并根据文本的上下文判断评价者针对每一个属性所表达的是褒义还是贬义的情感,这种就称之为属性级的情感分析。属性级的情感分析关注的是被评价实体及其属性,包括评价者以及评价时间,目标是挖掘与发现评论在实体及其属性上的观点信息,使之能够生成有关目标实体及其属性完整的五元组观点摘要。具体到技术层面来看,属性级的情感分析可以分为以下6个步骤:

关于文本中的实体抽取和指代消解问题,我们已经在知识图谱的相关章节中做了介绍,这里就不再赘述。针对篇章级、句子级、属性级这三种类型的情感分析任务,人们做了大量的研究并提出了很多分类的方法,这些方法大致可以分为基于词典和基于机器学习两种,下面我们进行详细的讲解。

做情感分析离不开情感词,情感词是承载情感信息最基本的单元,除了基本的词之外,一些包含了情感含义的短语和成语我们也将其统称为情感词。基于情感词典的情感分析方法,主要是基于一个包含了已标注的情感词和短语的词典,在这个词典中包括了情感词的情感倾向以及情感强度,一般将褒义的情感标注为正数,贬义的情感标注为负数。 具体的步骤如图所示,首先将待分析的文本先进行分词,并对分词后的结果做去除停用词和无用词等文本数据的预处理。然后将分词的结果与情感词典中的词进行匹配,并根据词典标注的情感分对文本进行加法计算,最终的计算结果如果为正则是褒义情感,如果为负则是贬义情感,如果为0或情感倾向不明显的得分则为中性情感或无情感。

情感词典是整个分析流程的核心,情感词标注数据的好坏直接决定了情感分类的结果,在这方面可以直接采用已有的开源情感词典,例如BosonNLP基于微博、新闻、论坛等数据来源构建的情感词典,知网(Hownet)情感词典,大学简体中文情感极性词典(NTSUSD),snownlp框架的词典等,同时还可以使用哈工大整理的同义词词林拓展词典作为辅助,通过这个词典可以找到情感词的同义词,拓展情感词典的范围。 当然,我们也可以根据业务的需要来自己训练情感词典,目前主流的情感词词典有三种构建方法:人工方法、基于字典的方法和基于语料库的方法。对于情感词的情感赋值,最简单的方法是将所有的褒义情感词赋值为+1,贬义的情感词赋值为-1,最后进行相加得出情感分析的结果。 但是这种赋值方式显然不符合实际的需求,在实际的语言表达中,存在着非常多的表达方式可以改变情感的强度,最典型的就是程度副词。程度副词分为两种,一种是可以加强情感词原本的情感,这种称之为情感加强词,例如“很好”相较于“好”的情感程度会更强烈,“非常好”又比“很好”更强。另外一种是情感减弱词,例如“没那么好”虽然也是褒义倾向,但情感强度相较于“好”会弱很多。如果出现了增强词,则需要在原来的赋值基础上增加情感得分,如果出现了减弱词则需要减少相应的情感得分。 另一种需要注意的情况是否定词,否定词的出现一般会改变情感词原本的情感倾向,变为相反的情感,例如“不好”就是在“好”前面加上了否定词“不”,使之变成了贬义词。早期的研究会将否定词搭配的情感词直接取相反数,即如果“好”的情感倾向是+1,那么“不好”的情感倾向就是-1。但是这种简单粗暴的规则无法对应上真实的表达情感,例如“太好”是一个比“好”褒义倾向更强的词,如果“好”的值为+1,那么“太好”可以赋值为+3,加上否定词的“不太好”变成-3则显然有点过于贬义了,将其赋值为-1或者-0.5可能更合适。 基于这种情况,我们可以对否定词也添加上程度的赋值而不是简单的取相反数,对于表达强烈否定的词例如“不那么”赋值为±4,当遇到与褒义词的组合时褒义词则取负数,与贬义词的组合则取正数,例如贬义词“难听”的赋值是-3,加上否定词变成“不那么难听”的情感得分就会是(-3+4=1)。 第三种需要注意的情况是条件词,如果一个条件词出现在句子中,则这个句子很可能不适合用来做情感分析,例如“如果我明天可以去旅行,那么我一定会非常开心。”,在这句话中有明显的褒义情感词,但是因为存在条件词“如果”,使得这个句子的并没有表达观点持有者的真实情感,而是一种假设。 除了条件句之外,还有一种语言表达也是需要在数据预处理阶段进行排除的,那就是疑问句。例如“这个餐厅真的有你说的那么好吗?”,虽然句子中出现了很强烈的褒义情感词“那么好”,但依然不能将它分类为褒义句。疑问句通常会有固定的结尾词,例如“……吗?”或者“……么?”,但是也有的疑问句会省略掉结尾词,直接使用标点符号“?”,例如“你今天是不是不开心?”,这个句子中含有否定词和褒义词组成的“不开心”,但不能将其分类为贬义情感。 最后一种需要注意的情况是转折词,典型词是“但是”,出现在转折词之前的情感倾向通常与转折词之后的情感倾向相反,例如:“我上次在这家酒店的住宿体验非常好,但是这次却让我很失望。”在这个转折句中,转折词之前的“非常好”是一个很强的褒义词,但真实的情感表达却是转折词之后的“很失望”,最终应该将其分类为贬义情感。当然,也存在出现了转折词,但语句本身的情感并没有发生改变的情况,例如“你这次考试比上次有了很大的进步,但是我觉得你可以做得更好”,这里的转折词没有转折含义,而是一种递进含义。在实际操作中,我们所以需要先判断转折句真实的情感表达到底是哪个,才能进行正确的分析计算。 构建情感词典是一件比较耗费人工的事情,除了上述需要注意的问题外,还存在精准度不高,新词和网络用语难以快速收录进词典等问题。同时基于词典的分析方法也存在很多的局限性,例如一个句子可能出现了情感词,但并没有表达情感。或者一个句子不含任何情感词,但却蕴含了说话人的情感。以及部分情感词的含义会随着上下文语境的变化而变化的问题,例如“精明”这个词可以作为褒义词夸奖他人,也可以作为贬义词批评他人。 尽管目前存在诸多问题,但基于字典的情感分析方法也有着不可取代的优势,那就是这种分析方法通用性较强,大多数情况下无需特别的领域数据标注就可以分析文本所表达的情感,对于通用领域的情感分析可以将其作为首选的方案。

我们在机器学习算法的章节介绍过很多分类算法,例如逻辑回归、朴素贝叶斯、KNN等,这些算法都可以用于情感识别。具体的做法与机器学习一样需要分为两个步骤,第一步是根据训练数据构建算法模型,第二步是将测试数据输入到算法模型中输出对应的结果,接下来做具体的讲解。 首先,我们需要准备一些训练用的文本数据,并人工给这些数据做好情感分类的标注,通常的做法下,如果是褒义和贬义的两分类,则褒义标注为1,贬义标注为0,如果是褒义、贬义和中性三分类,则褒义标注为1,中性标注为0,贬义标注为-1. 在这一环节中如果用纯人工方法来进行标注,可能会因为个人主观因素对标注的结果造成一定影响,为了避免人的因素带来的影响,也为了提高标注的效率,有一些其他取巧的方法来对数据进行自动标注。比如在电商领域中,商品的评论除了文本数据之外通常还会带有一个5星的等级评分,我们可以根据用户的5星评分作为标注依据,如果是1-2星则标注为贬义,如果是3星标注为中性,4-5星标注为褒义。又比如在社区领域中,很多社区会对帖子有赞和踩的功能,这一数据也可以作为情感标注的参考依据。 第二步是将标注好情感倾向的文本进行分词,并进行数据的预处理,前文已经对分词有了很多的介绍,这里就不再过多的赘述。第三步是从分词的结果中标注出具备情感特征的词,这里特别说一下,如果是对情感进行分类,可以参考情感词典进行标注,也可以采用TF-IDF算法自动抽取出文档的特征词进行标注。如果分析的是某个特定领域的,还需要标注出特定领域的词,例如做商品评价的情感分析,需要标注出商品名称,品类名称,属性名称等。第四步根据分词统计词频构建词袋模型,形成特征词矩阵,如表所示。在这一步可以根据业务需要给每个特征词赋予权重,并通过词频乘以权重得到特征词分数。最后一步就是根据分类算法,将特征词矩阵作为输入数据,得到最终的分类模型。

当训练好分类模型之后,就可以对测试集进行分类了,具体的流程与建模流程类似,先对测试的文本数据进行分词并做数据预处理,然后根据特征词矩阵抽取测试文本的特征词构建词袋矩阵,并将词袋矩阵的词频数据作为输入数据代入之前训练好的模型进行分类,得到分类的结果。 采用基于机器学习的方法进行情感分析有以下几个不足之处,第一是每一个应用领域之间的语言描述差异导致了训练得到的分类模型不能应用与其他的领域,需要单独构建。第二是最终的分类效果取决于训练文本的选择以及正确的情感标注,而人对于情感的理解带有主观性,如果标注出现偏差就会对最终的结果产生影响。 除了基于词典和基于机器学习的方法,也有一些学者将两者结合起来使用,弥补两种方法的缺点,比单独采用一种方法的分类效果要更好,另外,也有学者尝试使用基于LSTM等深度学习的方法对情感进行分析,相信在未来,情感分析会应用在更多的产品中,帮助我们更好的理解用户需求,提升用户使用智能产品的体验。

随着深度神经网络等算法的应用,情感分析的研究方向已经有了非常大的进展,但依然存在着一些难题是目前尚未解决的,在实操过程中需特别注意以下几种类型数据:

情绪轮在用户体验设计上被广泛的应用,很多情感化设计都是基于情绪轮进行的。但是在人工智能领域,将情绪进行多分类比情感分析的三分类任务要难得多,目前大多数分类方法的结果准确性都不到50%。这是因为情绪本身包含了太多的类别,而且不同的类别之间又可能具有相似性,一个情绪词在不同的语境下有可能表达的是不同的情绪类别,算法很难对其进行分类。即使是人工对文本进行情绪类别标注也往往效果不佳,因为情绪是非常主观性的,不同的人对不同的文本可能产生不同的理解,这使得人工标注情绪类比的过程异常困难。如何让机器可以理解真实的情绪目前还是一个未能攻克的难题。

情感解析技术现在能做到什么?

情感解析技术实质上也就是人工智能中的自然语言处理技术中的一种。也许前两年我还很难回答你这个问题,不过随着机器学习技术、硬件迭代等因素这两年人工智能得到了极大的发展,自然语言处理也就有了越来越多地实用价值。在正式回答你的问题之前,我们先要明白,作为人工智能技术基础的机器学习,其最重要的就是需要有充分大的样本数据进行训练,即需要先给机器一些已知“情感”的语言数据,才可以获取最终的解析引擎。这一点尤为重要,因为这决定了能产生使用价值的领域一定存在着易获取、易分析的语言数据才行。当然同时又要对顾客/消费者的情感反馈有着积极地需求。以这两个为条件,那么结果显而易见了:1、对话机器人。诸如微软小冰、苹果siri等。非常容易理解,因为“对话”本身就是语言数据之间的沟通,而情感数据作为从语言数据中提炼出来的附加价值信息,对智能对话机器人的“人性化”来说当然是有百利而无一弊。而且,对于这些大企业来说,巨量的语言数据也相当容易获取。3、情绪客服质检。这是一个很容易被忽略的行业,但是确实人工智能情感解析最直接最有效的应用之一。试想一下,客服质检需要做的是什么工作:判断客服人员工作是否到位……传统的客服质检只能通过堆叠人力的方式,主观、抽样判断。而现有的所谓“客服质检”系统也只不过是关键词提取、匹配,根本不是质检。但是情绪解析的出现彻底改变了这一状况,其实也不难理解,因为判断客服工作最直接的指标不就是顾客的“满意程度”嘛,而通过情绪解析获取的顾客通话或文本输入中的“情感状态及变化趋势”不就满足了这一条件。唯一的一个问题就是这需要很强的情绪解析实践能力,对准确率和技术基础有着很高的要求,故目前为止也只有很少几家诸如语忆科技等提供商才有这样的技术。但事实上,客服质检一定会是最需要情绪解析的细分行业之一。2、各种评论分析。这点也不难理解,在当今电商消费已经变成主流的网络时代,电商上会产生海量的评论数据。在以前,由于评论量不多,且是非结构化数据,文本处理能力又有限,导致品牌方们很难从中获取有用的信息,从而有巨量的评论数据被浪费。但是如今已经不一样了,像以上所提到的一些优秀的引擎提供商,不仅可以从评论中提取关键词、还能通过情绪解析明白用户的满意程度。一些上文提到的供应商有的还能做到对特定关键词的观点提取。这些都能帮助甲方从评论中挖掘非常有价值的消费者洞察。不难想象,一旦技术成熟,像评论一样的非结构化数据作为用户想法的直接传递,其价值将会远超那些“浏览量”“互动率”等结构化数据…………除此之外,还有如书籍分析归类、教育辅导优化、歌词台词总结等等很多应用场景,只不过有些商业价值不明显的领域仍然需要大胆的创新者去研究和开拓。不过无论如何,在这个人工智能兴起的时代,情绪解析仍处于朝阳时代,还具备着极大的潜力等待被挖掘~

如何从句子中提炼作者思想感情

1、标题诠释法.许多标题就是文、段的中心,结合文段的内容对标题的含义进行阐释.2、找中心句.中心句有统领的作用.文章的中心句多在开头和结尾,也有在中间的;段落的中心句多在段头,又叫首括句,也有在段尾、段中的;3、摘要法.文、段的意思总是多层次的,如果有主次之分,那就提取主要的省去次要的;如果是层层递进的,那就提取它最后归结的意思.4、联合法.文章中段落、层次的意思如果是并列的,那就把它们联合起来,简要概述.5、词句整合法.文、段、层的主要意思,通常是通过重要的语句或关键的词语表达出来的,我们把这些相关的语句或词语重新整合,就可概括出主要意思.6、概述法.某部分的意思有时候很难从原文中找到相应的词语,那就要在分析的基础上用自己的话简要表述.在答题的时候,有时候几种方法要交替使用或综合使用.思路是组成文章结构的内因,结构是作者思路的外显.      由于思路的灵活性,文章结构的形式也就有多样性;但是,基本的思路是容易认识的,基本的文章结构也是容易把握的.灵活多变千姿百态的思路归结起来,不外三种基本顺序:时间顺序,空间顺序,逻辑顺序.那么,在提炼作者思路或划分文、段结构层次的时候,一般采用:时间分析法,空间分析法,逻辑分析法.所谓逻辑,就是指思维规律.它包括以下思维顺序:因果、主次、先后、内外、表里……等等.在记叙文中按事情发展变化或思想感情变化划分结构,在议论文中按“提出问题—分析问题—解决问题”的基本格式划分结构,实际上使用的都是逻辑分析法,在说明文中按程序划分结构,实际上使用的是时间分析法.段落层次关系在内容上通常体现为:并列关系(在内容上分别从不同的侧面共同表达一个意思),层进关系(不同段或层的内容的意思依次逐渐推进深化),总分关系(包括总分式、分总式、总分总式).特别要注意的是,划分结构要从全局着眼,抓住线索,整体思维.

短文本倾向性分析与情感分类有什么区别

文本情感分析根据文本大小可以划分为单词,句子级和篇章级,根据不同的分析目的,可以分为主客观分析(作者对客观事物的分析)和主观分析(作者自己的体验);根据处理方法的可以分为基于词典的情感分析和基于机器学习(SVM方法,神经网络和朴素贝叶斯方法)的情感分析;根据是否有人工参与,可以分为非监督和监督分类方法,区别在于是否需要人工情感标记。算法,主要的改进是通过依赖分析,围绕情感词,进行情感倾向性分析。情感分析也被称为意见挖掘。情感分类涉及多个领域,如自然语音处理,人工智能,自动文本分类,文本挖掘,心理学等。它主要用来判别自然语言文字表达的观点,喜好以及感受和态度等相关的信息。

情感分析技术有哪些应用

情感分析(又称为观点挖掘或感情AI)是指使用自然语言处理、文本分析、计算语言学和生物特征识别来系统地识别、提取、量化和研究情感状态和主观信息。情感分析广泛应用于分析客户的心声,如评论和调查回复,在线和社交媒体,以及从市场营销到客户服务再到临床医学的保健材料。情感分析的一个基本任务是在文档、句子或特征/方面级别对给定文本的极性进行分类,判断在文档、句子或实体特征/方面中表达的意见是积极的、消极的还是中性的。高级的“超越极性”情感分类着眼于诸如“愤怒”、“悲伤”和“快乐”等情绪状态。进行情感分析的先驱包括“一般询问者”(General Inquirer),它提供了量化文本模式的线索,另外,还提供了基于对人的言语行为进行分析来检查一个人的心理状态的心理学研究。

如何把握作者的情感倾向

准确把握作者的情感倾向,对领会文章主旨、注重情感体验、发展感受能力,往往具有重要价值。因而有效指导学生在课外阅读中揣摩、判别作者的情感倾向,对真正读懂文章、正确解题,具有先决意义。常言道:言为心声。大多数文章,作者的立场态度、褒贬倾向鲜明无碍,但有些文章纯客观展示矛盾冲突,作者犹有“跳出三界外,不在五行中”的淡定超然,情踪难觅。有的文章,作者虽介入事中,但口吻戏谑,褒贬不定,又难以捉摸。鉴于初中生有限的文学积淀和欠敏锐的情感触角,教师从相应角度,择取课内外特定篇目,切实指导学生强化揣摩意识,掌握判别方法,显得尤为必要。一、从字里行间辨析文本是作者思想和情感的原始载体,即便隐晦不明,也能从相关的内容和特定的表达方式中找到蛛丝马迹。1、从特定情节上分析《羚羊木雕》一文,写少年“我”未征得父母同意,将珍贵的非洲木雕送给了挚友万芳,以致父母逼我索回,使“我”痛苦万端。小说充分展示了情与理的冲突、价值与友谊的较量、未成年人财物处置的尴尬。作者似乎只是提出了现实生活中可能存在的矛盾纠葛,并有意回避自己对事件本身是非曲直的判断,从而使作者的情感倾向显得扑朔迷离。在处理“体会课文思想情感”的问题时,我让大家揣摩作者的情感倾向,并提示学生注意“我”送羚羊木雕给万芳的背景情节——万芳仗义的表现;矛盾冲突双方给人的感觉——父母的生硬粗暴、不留余地,“我”的为难、无奈和痛苦;旁观者奶奶的态度——“算了吧,这样多不好。”如此处理后,学生顺利地感觉到作者对“我”与万芳友谊的珍视,对“我”处境的同情,并借助奶奶之口,曲折委婉地批评了父母简单、粗暴的做法。2、品味议论和抒情句鲁迅先生的《阿长与山海经》一文,写了有关阿长的许多事,且大多数事情都表现了阿长的粗俗、无知和随性,学生对人物负面感受较强,加之对她为“我”买来《山海经》的行为认识不足,很难体会作者的感激深情。针对这种情况,我让他们找出文章中的议论句和抒情句,说出你从“别人不肯做,或不能做的事,她确能够做成功”“这四本书,乃是我最初得到,最为心爱的宝书。”“仁厚黑暗的地母啊,愿在你怀里永安她的魂灵!”等句子中读到什么?从而形成对作者敬佩、感激、同情之心的感知。3、注意情感代言人在小说中,作者往往借助于矛盾冲突中立的一方表明态度,暗示倾向,如《羚羊木雕》中的奶奶,《我的叔叔于勒》中的“我”,《最后一课》中的小弗朗士等。尽管后两文的“我”与小弗朗士都是线索人物,但“我”代父母付牡蛎钱时对叔叔外貌的留意,同情之情溢于言表;内心的默念和付给小费,彰显了在金钱利益横流的社会里,骨肉亲情只与纯洁孩子同在的悲楚。小弗朗士行为态度的转变,意味着“最后一课”的无比庄严,爱国主义悲歌的极度感染力。作者的情怀通过次要人物的言行举止无声辐射,在貌似不偏不倚的沉静描述中,迸射出炽热的情感暗流。二、从写作手法上透视初中生往往会在丑陋与俊美、崇高与低俗、正直与邪恶混杂兼有的人物身上迷茫无措,弄不清作者对其是何种态度,从而影响对人物的准确把握。此种情况下,我让学生注意正负面是否有顺序。如果先写负面感觉,后写人物的不凡,一定是采用了欲扬先抑的写作手法,如《列夫托尔斯泰》、《阿长与山海经》,作者意在扬其正面,负面不过是一陪衬,为的是突出正面,使行文有起伏有波澜而已。倘若没有明显的顺序呈现,就是作者在塑造或描摹人物时,遵从生活或艺术的真实性,表现人物多层面、立体复杂的形象性格。此时作者的情感倾向显然也呈现出相应的复杂性。三、从人伦道义上判断如《蒲柳人家》中的何大学问,其性格就体现出两面性。一方面他仗义疏财,慷慨豁达,侠肝义胆,能言善道;另一方面他又死要脸面,爱戴高帽,为人处世粗枝大叶,行事从不量力而行。且正反两面往往相依相伴地裹在一起,呈现出正面难得、负面小节无害的特点,体现出作者对人物尊敬与戏谑参半的情感态度。又如《水浒》、《西游记》中,诸如鲁智深、猪八戒等人物形象,作者的肯否无不对应于人伦纲常、公序良俗和人本理念,作者不变态,他心即公心。四、从背景动因上思考有些文章,往往与作者经历和特定的背景相联系,惟有了解这些,才能透视作者内心的纠结在作品中的反映。如鲁迅先生对国人精神麻木、不觉悟耿耿于怀,其作品中屡显批判、痛惜之情:《藤野先生》中电影里的看客,《孔乙己》中的孔乙己及惟嘲弄孔乙己为快事的短衣帮,《故乡》中的中年闰土等皆有此疾,其文无不存有唤醒民众的念想,表达怒其不争的感愤。综上所述,了解作者的情感倾向,是开启正确理解文章的窗口,而帮助学生学会自己打开窗口,不仅需要深入文本,还须逐步提高他们的文学素养、增强社会认知。

返回顶部